

PAN

Susann Vogler

21.03.2011

AMBER Annual Meeting

Identification and Quantification of Submarine Groundwater Discharge (SGD) in the Puck Bay/ Poland (WP B.4 and B.5)

S. Vogler¹, O. Dellwig¹, P. Escher¹, B. Szymczycha², T. Gentz³, L. Kotwicki², U. Struck⁴, S. E. Weise⁵, D. Donis⁶, F. Janssen⁶, F. Wenzhöfer⁶, M. Schlüter³ & M. E. Böttcher¹

- 1 Leibniz Institute for Baltic Sea Research (IOW), Marine Geology, Seestraße 15, 18119 Rostock- Warnemünde, Germany
- 2 Institute of Oceanology of the Polish Academy of Science (IO-PAN), Sopot, Poland
- 3 Alfred Wegener Institute for Polar and Marine Research (AWI), Marine Geochemistry, Bremerhaven, Germany
- 4 Naturkundemuseum Berlin, Germany
- 5 Helmholtz Center for Environmental Research (UFZ), Halle, Germany
- 6 Max Planck Institute for Marine Microbiology, Bremen, Germany

Outline

Introduction

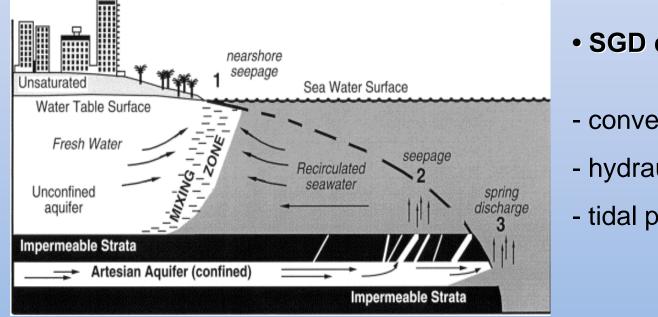
Submarine Groundwater Discharge Investigation Area

Results

Calculation Groundwater Composition Biogeochemical Processes Seepage Rates

Conclusions

Outlook



Introduction

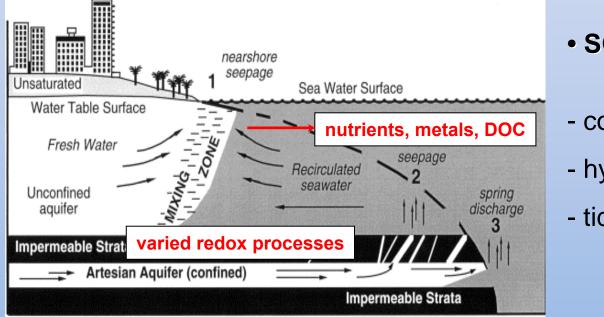
Submarine Groundwater Discharge (SGD):

SGD = direct groundwater outflow across the ocean- land interface into the ocean (recirculated seawater included)

(Church TM. Nature, 1996)

- SGD driving forces:
- convection
- hydraulic head
- tidal pumping

Burnett et al. Journal of Sea Research 46, 109-116 (2001)



Introduction

Submarine Groundwater Discharge (SGD):

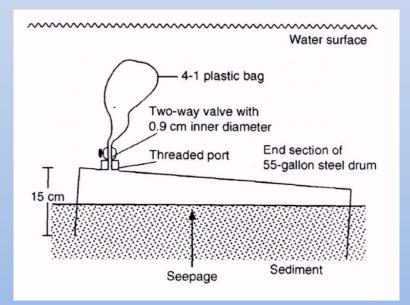
SGD = direct groundwater outflow across the ocean- land interface into the ocean (recirculated seawater included)

• SGD driving forces:

(Church TM. Nature, 1996)

- convection
- hydraulic head
- tidal pumping

Burnett et al. Journal of Sea Research 46, 109-116 (2001)



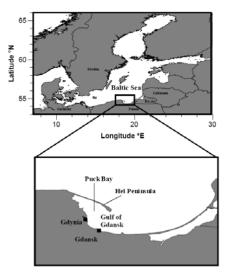
Introduction

SGD – Identification:

- Anomalies (salinity, temperature, different biological community)
- Tracer (CH₄, Ra, Rn)

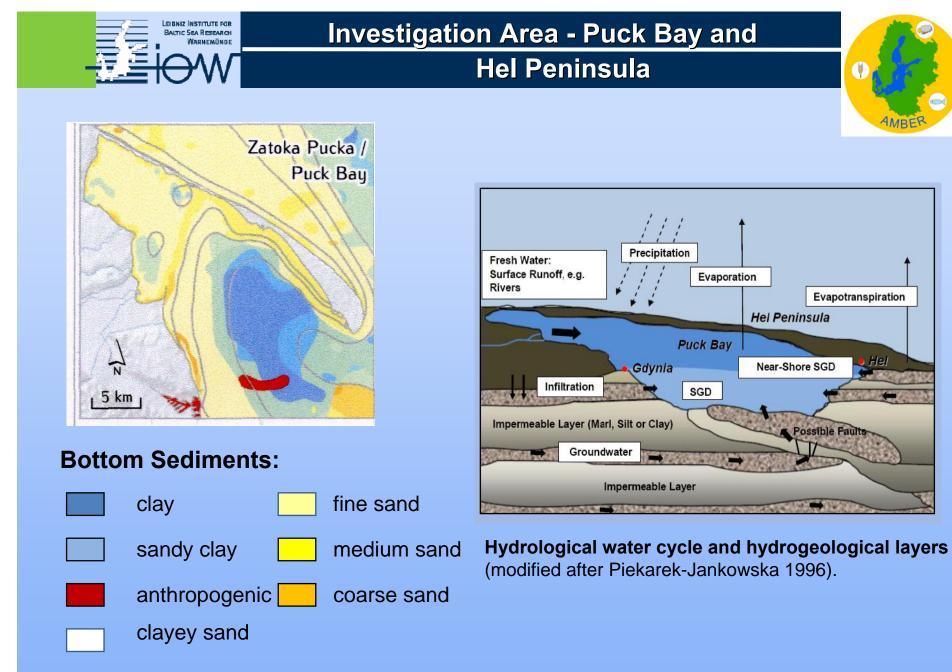
SGD – Measurement by Seepage Meter:

Manual or "Lee-type" seepage meter


Burnett et al. Science of the Total Environment 367 (2006) 498-543

Investigation Area - Puck Bay and

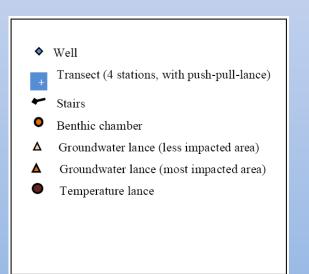
Hel Peninsula



Puck Bay and Hel Peninsula/ Poland

Hel Beach: Investigation with Groundwater

Lances



LINE INSTITUTE FOR
BATTIC SAR RESEARCHSampling Site – Salinity Survey andFurther Investigations October 2010

Figure 2: Salinity measurements (in PSU) Hel Beach in an area of 20 x 30 m.

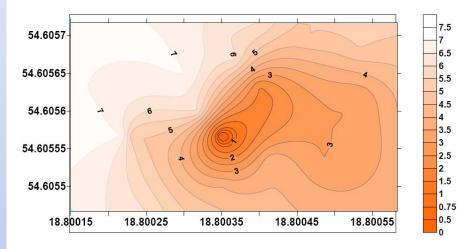
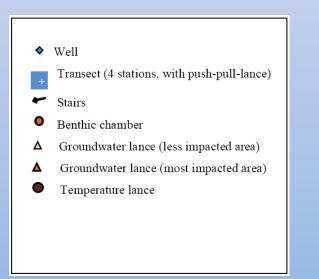
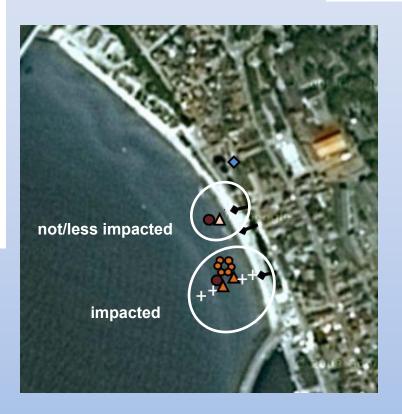
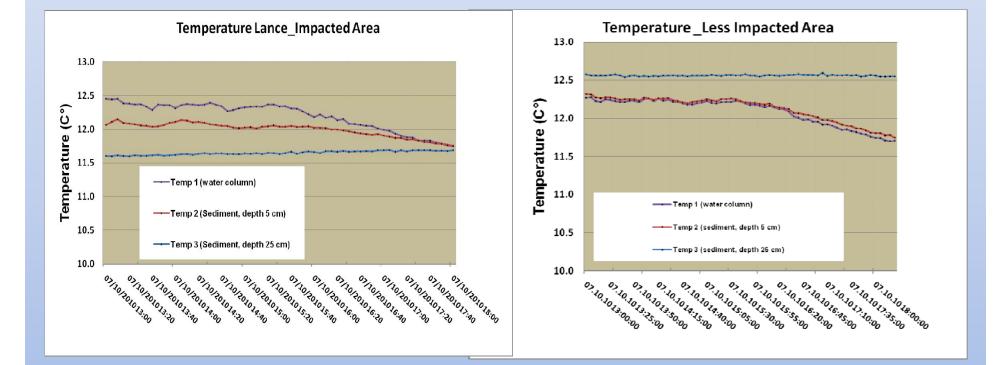




Figure 2: Salinity measurements (in PSU) Hel Beach in an area of 20 x 30 m.

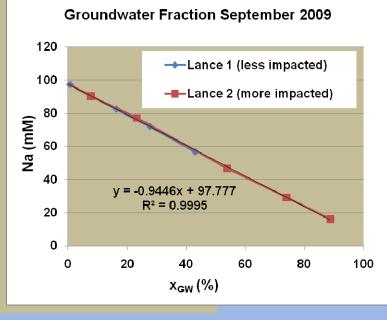
Sampling campaigns: Sept and Nov 09, Feb/March 2010, May 2010, October 2010

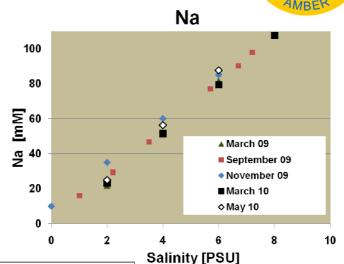
<u>Sampling Site – Salinity Survey and</u> further Investigations


► What is done so far ?:

- Groundwater impact measurable with temperature anomalies
- Groundwater composition
- Spatial, temporal, seasonal variations?
- Groundwater origin (the same like in the well ?)
- Important processes
- Seepage Rates

Hel Beach: Temperature Profiles, Oct 2010



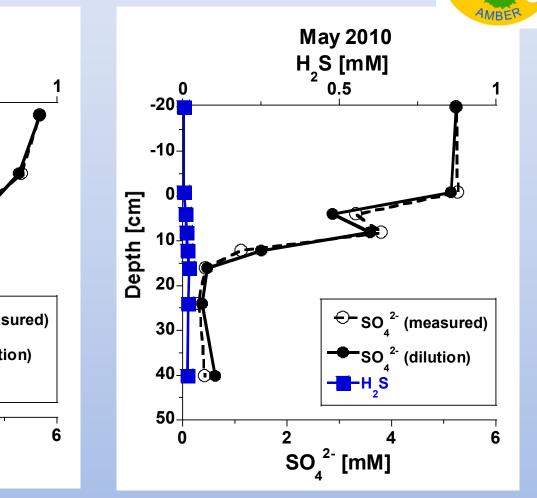

Calculation Groundwater Composition

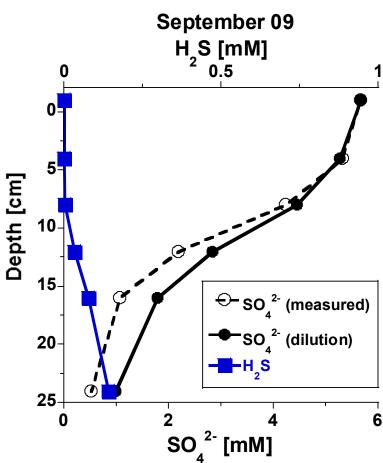
Two End-Member Mixing-Model:

- groundwater portion x_{GW}
 (c_{mix}-x_{Bowa}*c_{Bowa})/c_{GW} = (c_{mix} c_{Bowa})/(c_{GW}-c_{Bowa})
- theoretical concentration (only dilution) c_{theoret}
 x_{GW}*c_{GW} + x_{Bowa}*c_{Bowa}
- x_{Bowa} = 1-x_{GW}
 x_{Bowa} portion bottom water
 c_{GW} conc. in groundwater
 c_{Bowa} conc. in bottom water
 c_{mix} conc. mixing water

Calculation Groundwater Composition

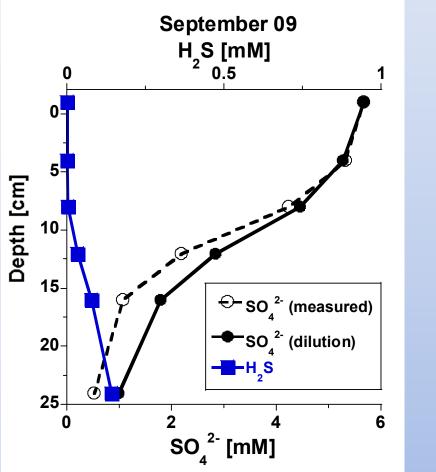
Two End-Member Mixing-Model:

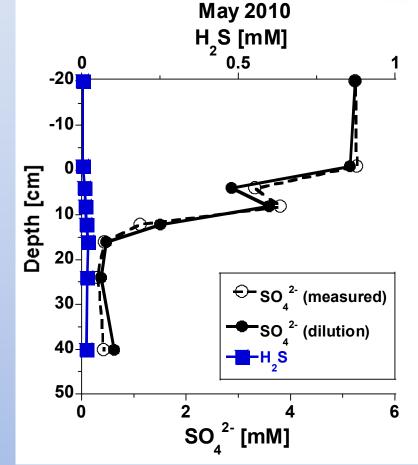

- groundwater portion x_{GW}
 (c_{mix}-x_{Bowa}*c_{Bowa})/c_{GW} = (c_{mix} c_{Bowa})/(c_{GW}-c_{Bowa})
- theoretical concentration (only dilution) c_{theoret}
 x_{GW}*c_{GW} + x_{Bowa}*c_{Bowa}
- x_{Bowa} = 1-x_{GW}
 x_{Bowa} portion bottom water
- c_{GW} conc. in groundwater c_{Bowa} conc. in bottom water
- c_{mix} conc. mixing water


Na =	5.41± 7.44 mM
Mg =	0.84 ± 0.73 mM
К =	0.2 ± 0.07 mM
Fe:	0 - 6 µM
Mn:	2 - 7 µM
S ²⁻ :	0 - 2 mM
SO4 ²⁻ :	0 - 0.3 mM

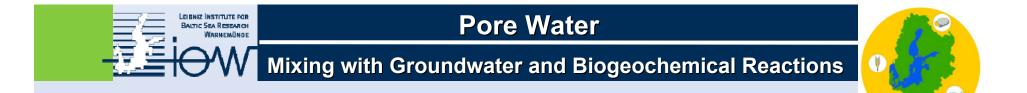
Pore Water

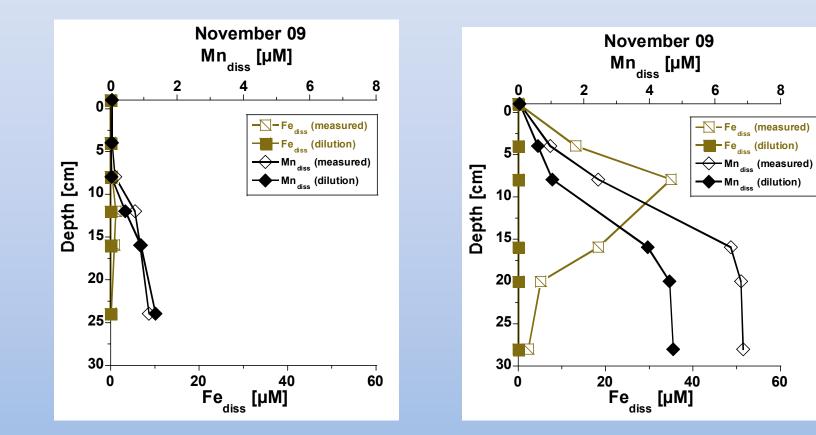
Mixing with Groundwater and Biogeochemical Reactions




Pore Water

Mixing with Groundwater and Biogeochemical Reactions




LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

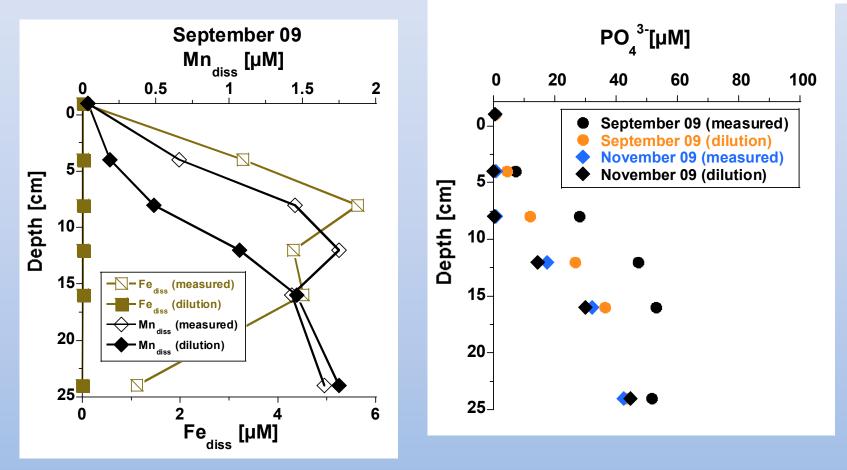
Sulphate Reduction => Release of H_2S

Seasonal Variations

 \diamond

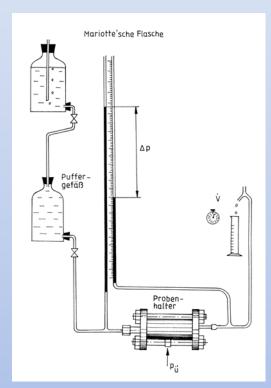
Pore Water Mixing with Groundwater and Biogeochemical Reactions November 09 November 09 Mn_{diss} [µM] Mn_{diss} [µM] 2 8 2 8 - Fe_{diss} (measured) - Fe_{diss} (measured) Fe_{diss} (dilution) - Fe_{diss} (dilution) → Mn_{diss} (measured) – Mn_{diss} (measured) Depth [cm] Depth [cm] - Mn_{diss} (dilution) Mn_{diss} (dilution) 0 10 15 15 20 20 25 25 $\langle 1 \rangle$ 30 30 20 Fe_{diss} [µM] 20 Fe_{diss} [μM] 40 60 40 60 Λ

- highly anoxic groundwater


LEIBNIZ INSTITUTE FOR

BALTIC SEA RESEARCH MADNEMÜNDE

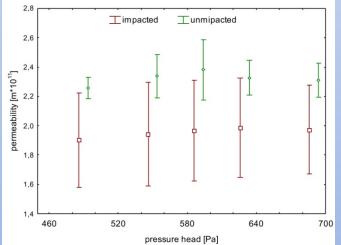
- reduction of Manganese Oxides and Iron-Oxyhydroxides =>
- => Release of Mn²⁺ and Fe²⁺ and in deeper parts formation of FeS
- not ideal redox zonation (advective transport through permeable sediment)


- Dissolution of iron oxyhydroxides = release of phosphate

Permeability



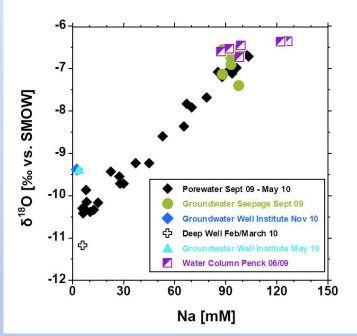
Hel Sediments:

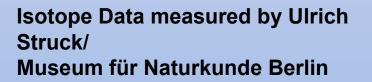

Tab. 1. Basic descriptive statistics for impacted and unimpacted sediments

	PERMEABILITY [m ²] BASIC STATISTICS			
STATISTICS	IMPACTED	UNIMPACTED		
VALID N	150	150		
MEAN	1.95×10 ⁻¹¹	2.32×10 ⁻¹¹		
MINIMUM	1.43×10 ⁻¹¹	2.06×10 ⁻¹¹		
MAXIMUM	2.32×10 ⁻¹¹	2.87×10 ⁻¹¹		
ST.DEV.	0.33×10 ⁻¹¹	0.14×10 ⁻¹¹		

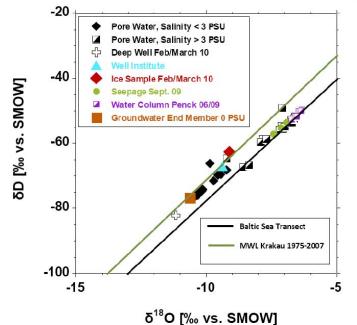
Lech Kotwicki (IOPAN)

Permeability Measurement (Häfner et al. 2009)





Hel Beach: Isotopic Analyses

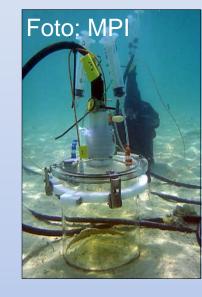


Na vs. δ¹⁸Ο

Holocene meteoric waters (D'Obyrn et al. 1997): $\delta^{18}O = -10.09 \%$ $\delta D = -69.45 \%$

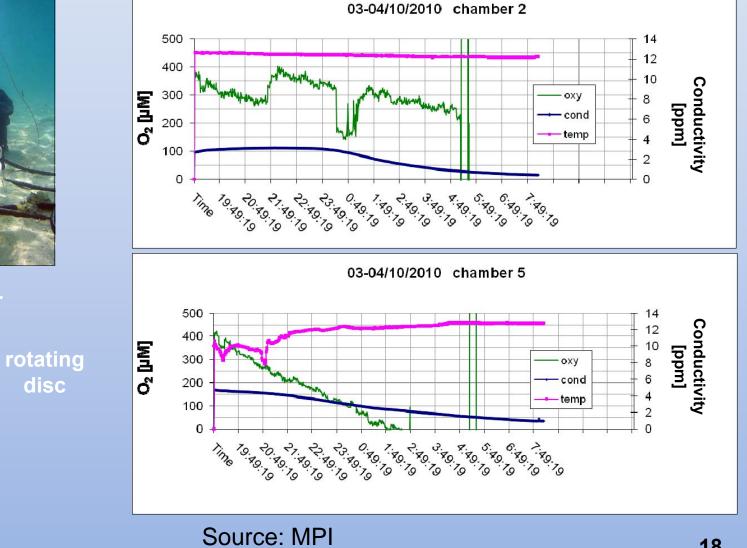
Groundwater End-Member: $\delta^{18}O = -10.63 \%$ $\delta D = -76.70\%$ ³H (groundwater endmember) = 2.4 TU ³H (sea water) = 9.1 TU

Measured by Lee-type-seepage meter:


Benthic Chamber	1	2	3	4	5
Station	1	1	2	2	2
Size (cm)	30 x 30 x 14	20 x 20 x 13	30 x 30 x 13	20 x 20 x 13	27 x 33 x 10
Salinity (PSU)	5.5	3.7	6.5	/	5.9
Volume in Bags (mL/h)	210	240	890	70	630
Seepage Rate (mL m ⁻² min ⁻¹)	39	100	162	29	119
Seepage Rate (L m ⁻² d ⁻¹)	56	144	233	42	172

Hel Beach: Seepage Rates October 2010

Measured by automated benthic chambers:

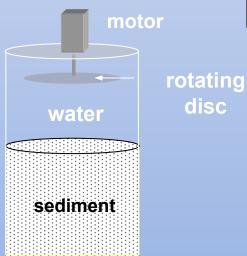


motor

water

sediment

disc


Hel Beach: Seepage Rates October 2010

Measured by automated benthic chambers:

3 4.10.10	Seepage rate (L/m ² d)					
Chamber	1	2	3	4	5	6
	24	32				
7.10.2010						
	79	76	28	25	113	13

Conclusions

- no saisonal variability in groundwater composition
- (conservative elements)
- temporal and spatial variability of seepage
- advective transport of groundwater and sea water through permeable sediments
- biogeochemical reactions in the mixing zone => anoxic groundwater
- methane and precepitation products in groundwater may decrease permeability in sediment
- => also responsible for high spatial variability of element contents

- further field campaigns in Hel Peninsula (sampling of rivers and wells) and near Kühlungsborn
- radium measurements (modeling)
- further measurement of seepage rates
- Isotopic analyses (¹³C (DIC, DOC, CH₄), ³⁴S (SO₄²⁻, H₂S))

- Composition of anoxic groundwater escaping from coastal sands
- to the Puck Bay (Poland)/ in Estuarine, Coastal and Shelf Sciences

(in preparation)

- paper about geobiochemical processes leading to

this groundwater (modeling)

- paper about quantification of SGD (cooperation with AWI,

comparison of different techniques)

Relevance of Results

- process of SGD important to consider in coastal areas
- important to know quality and quantity of seepage water
- \Rightarrow danger of eutrophication
- quantification: uniform definition of SGD (recirculated seawater included)
- important to know source and age of groundwater =>
 affected by climate change and change in land use
 (spring of aquifer may be affected kilometres away from coast
 e.g. by agriculture)

Thank you !